

Developing and Deploying Java Applications Around SAS Greg Barnes Nelson & Jeff Wright

Developing and Deploying Java Applications Around SAS:
What they didn't tell you in class

Jeff Wright, ThotWave Technologies, Cary, NC

Greg Barnes Nelson, ThotWave Technologies, Cary, NC

ABSTRACT

Java is one of the most popular programming languages today.
As its popularity continues to grow, SAS’ investment in moving
many of their interfaces to Java promises to make it even more
prevalent. Today more than ever, SAS programmers can take
advantage of Java applications for exploiting SAS data and
analytic services. Many programmers that grew up on SAS are
finding their way to learning Java, either through formal or
informal channels. As with most languages, Java is not merely a
language, but an entire ecosystem of tools and technologies.
One of the biggest challenges in applying Java is the shift to the
distributed n-tier architectures commonly employed for Java web
applications.
In this paper, we will focus on guiding the programmer with some
knowledge of both SAS and Java, through the complex
deployment steps necessary to put together a working web
application. We will review the execution models for standard and
enterprise Java, covering virtual machines, application servers,
and the various archive files used in packaging Java code for
deployment. We will also survey the mechanisms available for
using SAS services from the Java language and provide some
helpful tips for installing these services. We will follow this by
using a detailed example to show how a working application is
created using the AppDev Studio development environment.
Here, we will demonstrate how you can incorporate industry-
standard testing and deployment strategies to migrate your code
to a production environment that includes a Java application
server, and SAS compute and data services (also referred to here
as the Analytic/ Data Tier). We will conclude with pointers to
some of the most popular tools supporting Java development
today.

INTRODUCTION

Learning a new language like Java is much like learning SAS.
Remember when you first learned about the Program Data Vector
and various tricks like _n_, first. and last. syntax and common set
and merge techniques? Of course, understanding what was
happening at each iteration of the Data Step or the complicated
syntax for performing a sub query in SQL didn’t make you the
programmer you are today. In fact, learning the “language” itself
doesn’t get you close to understanding the complexity of how that
language can and should be used, nor does it prepare you for the
complex world of “architecture”.
Like SAS and the myriad of products that have become
bedfellows to the Data Step, Java makes our jobs even more
interesting. In your first Java class you probably learned about
“objects”, classes and methods. That understanding is essential
for moving ahead to develop enterprise class applications that
can support a large number of users and more data, but it’s not
enough.
In this paper, we are going to take you to that next level of
mastery by helping you understand how Java and SAS can be
used together. We will cover the technologies available to help
you accomplish that and some recommendations on the
appropriate “packaging” for the source code and related files to
help you manage the application in a more robust manner.

WHAT’S COVERED IN THIS PAPER

We cover a tremendous breadth of material in this paper. Before
we get started, here's the road map:

Java Web Application Concepts
Client Tier
Web Tier
Analytics/Data Tier

How Can SAS and Java Be Used Together
Comparison of Strengths
Choosing an Option for Talking to SAS

SAS and Java Integration Details
Java Execution Models
SAS Service Details

Packaging, Building, and Deployment
A Complete Example
Example Project Directory Structure
Testing Your Web Application
Required Infrastructure
Required Development Skills

JAVA WEB APPLICATION CONCEPTS

Java, as you will recall from your first course, is a programming
language designed to create “applications” that run on the web.
(For the purposes of this audience, that’s how most people use
Java.) These applications can run on the client, the server, or
both. The major challenges that Java attempts to solve include:

• Platform Independence – Java can run on most platforms

• Speed/ Efficiency – because Java is not strictly an
“interpreted” language, it is relatively fast and provides an
efficient use of computing resources

• “Open” standards – many IT managers are looking for
technologies that “play well with others”

• Object Oriented – because the issues we are trying to solve
with Java can be expressed in terms of the problem (real
world objects), we can express the solution in the same
content – not technical representations of the solution. Also,
objects give us mechanisms for using good design patterns
such as Model-View separation.

Java can be run on the client, the server, or both. SAS can
produce content from both Data and Proc Steps, as well as
provide access to data managed by other tools. This bundling of
technologies provides a rich, and subsequently complex,
landscape for us as architects. In this section, we present a
model architecture for Java web applications that also use SAS.
Dynamic web applications use a multi-tiered architecture. These
tiers represent logical layers in our application that have different
responsibilities, and go by many names. One terminology we like
-- Client Tier, Web Tier, and Analytics/Data Tier -- is represented
in the diagram below.

Developing and Deploying Java Applications Around SAS Greg Barnes Nelson & Jeff Wright

CLIENT TIER

When we think about web applications, we most often visualize
the web pages that display data, graphs and tables. These
viewable components (also known as "presentation components")
in the client tier are usually HTML pages (with Dynamic HTML/
JavaScript).
Be aware that when your browser is showing an HTML page, that
doesn't necessarily mean there is a corresponding HTML file on
the server. When we refer to dynamic web pages, we're referring
to web tier logic that creates the page on the fly, usually based on
data. In the Java world, dynamic web pages are created using
JSP (JavaServer Pages) or servlets. JSP pages are best used
for generating text-based content, often HTML or XML. Servlets
are most appropriate for generating binary content, or content with
variable structure. For those familiar with SAS/IntrNet or Active
Server Pages (Microsoft), these are analogous technologies that
produce dynamic web pages.
Heavier-weight clients, such as "rich" standalone clients,
application clients, or special content formats such as
Macromedia Flash or Adobe's PDF, can implement relatively
more view functionality in the Client tier, and less in the Web tier
(web server).
Client tier programs translate user actions and input into server
requests and format server responses into some form (usually
visual) that a human can use.

WEB TIER

The web tier makes application functionality available on the
World Wide Web by responding to requests from the client tier. It
accesses data and business functionality from the analytics/data
tier, manages screen flow, and often encapsulates some user
interaction control. The web tier typically interacts with client tier
programs using the HTTP protocol (the standard protocol used by
web browsers), and may access other tiers with a variety of
protocols.
As we suggested above, the client and web tiers work together to
define the user interface of a web application. For data entry and
applications that require a great deal of user interaction or data
capture, web clients can use JavaScript to perform sophisticated
validation and error checking. Even though this JavaScript runs
in the client tier (web browser), it may originate from a JSP page
on the web tier (server). Developers new to web development
must be aware of where the code will execute.
In most well-written web applications we find a clear separation
between the logic of the application and the specifics of how
information is presented in a web browser (Barnes Nelson, 2000;
Simon, 1995). This is sometimes referred to as model view
separation.
In the realm of application logic, confusion exists about how SAS
can and should be used in conjunction with Java. This is where
we have to make the tough decisions about what should be done
with what language. For example, if we have a simple data entry
application that records data for a clinical trial, there are several
approaches that could be used. We would typically have some
client tier logic performing checks that the data is well formed and
valid before the server begins to do any work. There may server-

side logic that provides cross visit validations or data range
checks before actually writing the values to the database. It is
these programs that are of interest to us.
The problem could be solved with Java; it could also be solved
with SAS. Making this decision is what makes this problem so
interesting and why good architects are worth their salaries. We
aren’t going to pre-dispose you to our bias about how this problem
should be solved as it would also likely depend on numerous
other factors, such as:

In what database does the information reside?
Will the code that performs the logic checks be used in other
contexts besides the web data entry application?
Is there code that already does this or similar things?
Does the logic require the strengths of Java?
Does the logic require the strengths of SAS?

The bottom line is that this is an architectural decision that should
be left to the smart folks who do this for a living. However,
knowing that you have this decision to make and what the
implications for how you might “talk” to SAS is exactly the kind of
thing we want to focus on in the next section of this paper, but
first, let’s talk about the analytics/data tier.

ANALYTICS/DATA TIER

Most modern web based applications utilize data at some level as
either the focus of the application (data delivered over the web) or
to store information about the application or its users (security,
configuration, personalization). Just as important as the web tier,
is the database component that supports the architecture.
Just as with Base SAS, there are several ways to tackle the data
problem. We first have to ask ourselves “where do we want to
store the data” before we can ask "how do we access the data”.
SAS tables, MDDBs, XML, flat files and relational databases of all
kinds can be used as a persistent storage for our web
applications.
Note that our diagram shows Legacy Systems in this tier. Other
applications are frequently a necessary source (or destination) for
the data in our application.
Finally, we show SAS explicitly in this tier. SAS is ideal for sifting
through large quantities of data and summarizing it to indicate
aggregate results and trends. Because these types of services
need direct and high-speed access to large amounts of data, we
like to broaden the definition of what is normally called the data
tier to include analytic services.

HOW CAN SAS AND JAVA BE USED TOGETHER

With this foundation of Java web application concepts, we can
move on to tackle the question – “how can SAS and Java be used
together?” The answer, of course, is a huge topic in-and-of itself,
but let’s try to outline some possibilities.

COMPARISON OF STRENGTHS

First let's compare the strengths of Java and SAS in the areas of
presentation, application logic, and data management.

Presentation

Java is very strong in the areas of:

• Generating dynamic web content on demand

• Conditionally presenting content based on security rules or
user preferences

• Acting as a controller for form submission and page

Developing and Deploying Java Applications Around SAS Greg Barnes Nelson & Jeff Wright

redirection

• Displaying charts and graphics that are more general in
nature (bar, pie, line) or those that require client side
interactivity (applets)

SAS is excellent at producing “specialty” content such as:

• STAT/ ETS/ QC charts

• Output from ODS

However, SAS is not generally appropriate for generating HTML.
It’s often better to separate the logic (SAS-produced numbers)
from how it is presented.

Application Logic

Because Java as a language is fast and tends to scale very well
(it has multi-threading built it), Java is good for:

• Generalized routines for validation

• Simple calculations

• Manipulating data in memory for preparing for presentation

• Implementing business rules

• Coordinating transaction logic

SAS, of course has a very strong foundation with its analytic
capability. SAS programs/ macros are very useful when they:

• Prepare data for delivery to the web

• Perform advanced analytics

• Are used in non-web applications

Data Management

Java doesn’t have a native database, but instead offers an API
(Java Database Connectivity, or JDBC) that talks to databases
such as Oracle and SAS. Access to databases can be done
“natively” through JDBC.
SAS has a native database type that can be accessed through
libname engines and used throughout the system by reference. In
addition, SAS can talk to a multitude of database vendors through
either native engines (Oracle) or through generalized methods
(ODBC).
Since the purpose of this paper is not to compare SAS to Java,
but to focus on how they can work together to build world class
applications, let’s turn our attention on how we can talk to SAS
from Java to surface the power of SAS in web applications.

CHOOSING AN OPTION FOR TALKING TO SAS

There are several ways to connect to SAS using external clients.
One that many SAS users have heard of is IOM (Integration
Technologies Integrated Object Model). Enterprise Guide is
one example of an external client that requires IOM, and this is
available to Java as well. When you write Java clients, you don’t
always need to use IOM. The next section outlines the various
methods for accessing SAS; specifically, we will discuss three:

• JDBC Access to SAS Data (using either SAS/Share or
Integration Technologies)

• SAS/Connect Protocol for Analytic and Data Services

• Integration Technologies, also for Analytic and Data
Services

What we will introduce next are the three most common
mechanisms for SAS access from Java, while giving some
guidance on when to use them.

 Basic Data Access

In many cases it is useful to simply gain access to the data in
SAS datasets. In this case, it is our recommendation to let Java
talk to the SAS data directly using a JDBC driver. This
presupposes that the data is in the necessary form for display or
update purposes.
Had there been any manipulation of the data required prior to
display, you’ll have to make the decision – “can I do that with Java
or do I have to do that with SAS?” If you can do everything you
need with Java, then all you need is the JDBC driver (note there is
both an IOM JDBC driver as well as a SAS/Share JDBC driver).
If on the other hand, you need the power of SAS to manipulate
the data prior to display, then you should refer to the next section
on exploiting the power of SAS with Java.

Exploiting the Power of SAS

Given the fact that you want SAS to perform some analytics or
implement some special rules that SAS is adept at doing, you’ll
need to decide the necessary level of complication. Of course,
the more complex, the more powerful and robust the applications
tend to be (so it would seem). The choice you face at this point is
between SAS/Connect and IOM.
Exactly how to decide this relies on a bit of intuition, a strong
foundation in architecture and a bit of guess-work. In our minds,
the best way to think about the difference between these two
protocols is: when we use SAS/Connect, we pass the
responsibility off to SAS to do all of the work and we gain
something in return (think of this as a package or bundle) that has
to be converted back into something that Java understands; when
we use IOM, you can write Java client programs that make use of
the SAS IOM server almost as if it were a set of Java objects.
While we don’t often condone using SAS for producing the web-
ready content as this violates our philosophy on the separation of
model and view, we do like the power of ODS for handling large
amounts of graphical and tabular content on a page. With the
introduction of ODS templates and style guides in upcoming
releases of SAS, we think this will become even more powerful.
By using both JSP/Servlets and ODS in combination to deliver
dynamic ODS content, users have a great deal of flexibility for
their reporting options.

Summary of SAS Access Techniques

The following table summarizes the main considerations in
choosing each of these three access techniques:

Access Methods to Talk to SAS

What you
want to
accomplish

Robustness
Required

Effort /
Complexity

How you do this

Access a SAS
dataset (table
viewer/ editing)

High Intermediate Use JDBC to access
SAS/Share data
sources.
SAS/Connect and
IOM are not
required.

Submit a SAS
job and retrieve
the formatted
output

Low Beginner webAF Custom Tags
(using submit tag)
over SAS/Connect
(IOM and
SAS/Share are not
required)

Interface with
SAS data and
the SAS
workspace
object

High Advanced Utilize the IOM
Workspace Factory
APIs to use with
your connection
(IOM spawner).

Developing and Deploying Java Applications Around SAS Greg Barnes Nelson & Jeff Wright

SAS AND JAVA INTEGRATION DETAILS

In this section, we provide a detailed discussion of how to
accomplish the integration of SAS and Java. We begin with a
review of Java execution models. With this foundation, we
discuss configuration details for the primary SAS APIs for Java.

JAVA EXECUTION MODELS

Now we'd like to make a dramatic transition from the blue-sky
world of architecture to the subterranean mechanisms of how
Java works. These details may seem obscure, but we find that
developers new to Java often have the most difficulty with tool
setup issues that require a good understanding of how Java code
is packaged and run.
To start, Java is a compiled, object-oriented language. In an
object-oriented language, the basic unit of design and
programming is a class. Objects are instances of classes. Java
classes are not only assigned a name, they are also assigned a
package. Packages are useful because they allow the language
to distinguish between two classes with the same name. For
example, within the standard Java library is the class java.util.List,
which is a data structure, and a class java.awt.List, which is a GUI
component.
Package names themselves are multi-part names separated by
dots. By convention, packages for the standard Java library start
with "java", and other packages start with the (reversed) Internet
domain of the party that supplies the package. The fully qualified
name of a Java class includes the package name and the class
name. For example, com.sas.mdtable.Cell is the fully qualified
name of the Cell class in the com.sas.mdtable package. All of
this attention on naming and packaging is designed to make it
easy to bring together class libraries from several different parties
without the need to worry about duplicate names.
The source code for a Java class is stored in a ".java" file, and
when it's compiled you get a class file with a ".class" extension. If
you're familiar with C programming and compilation, you might
expect the class file to contain machine instructions for the
computer where it was compiled. Instead, Java compiles to
bytecodes that are executed by a virtual machine. The bytecodes
are the same whether you compile on a Windows PC, a UNIX
machine or any other computer. This is what gives Java its
platform independence. You can think of the virtual machine as
an interpreter, but that glosses over the fact that the high-level
Java language has been compiled to low-level bytecodes, and
that virtual machines have very sophisticated optimization
allowing performance to approach that of native-compiled
languages like C. Java is not unique in its use of a virtual
machine for execution. Other similar implementations are the
Common Language Runtime of Microsoft's .Net architecture and
the cross-platform abilities of SAS itself.

JAR Files and CLASSPATH

Notice that each Java class gets compiled to its own class file.
When you understand that a complex application (or library) will
contain many classes, you'll begin looking for a way to wrap up
multiple class files in a single file for easier distribution. What
you're looking for is a JAR file (Java Archive). A JAR file is just an
archive that wraps up multiple Java class files using the popular
zip file format. It also contains a manifest file, which includes
descriptive information about the archive.
JAR files may be created with the command line jar tool supplied
by Sun. UNIX users will recognize that the jar tool's command
line options are inspired by the tar command.
How does the virtual machine actually find the Java classes that
make up the application we've created? This is determined by the
CLASSPATH. The CLASSPATH is very similar to the concept of
the PATH environment variable on Windows and UNIX. It is a list
of directories and archive files that are searched for the classes
referenced in your application. You specify the CLASSPATH

when you start the virtual machine, either through the command
line or by using an environment variable. Getting all the JAR files
you need and getting the CLASSPATH properly defined are
typical tasks that confront you when you need to run somebody
else's Java application. When you get the "class not found" error,
you know you have a CLASSPATH problem.
So far we've covered the concepts for how a standalone Java
application runs. The Java code for the application is compiled,
and ideally archived as a JAR file. This JAR file and the JAR files
for all libraries used by the application are put in the deployment
location that you choose. The CLASSPATH to find them is
specified when you run the Java virtual machine.

J2EE Packaging

In Sun's terminology, web applications fall under the J2EE
specification (Java 2 Enterprise Edition). The good news is that
J2EE applications have another layer of built-in services, above
and beyond the core Java library, which a developer can use
without having to create them.. These services are provided by a
piece of software known as an application server. So an
enterprise application is not just deployed to a virtual machine, it
is deployed to an application server. A J2EE application server is
the "container" where you deploy your enterprise application. It
provides middleware services such as a web server, transaction
management, and distributed communication.
In summary, the application server is the glue that connects URLs
in somebody's browser to some piece of Java code you wrote.
The bad news (if you're starting to get tired of definitions) is that
J2EE defines several new types of archive files. Like the JAR file,
these new archives use the zip format. One is the WAR file, or
Web Application Archive. A WAR file contains the files that make
up a dynamic web application, including JSP pages, HTML
pages, images, JAR files, and other file types. There is a defined
directory structure for the files that make up a WAR file, and the
WAR file must contain a deployment descriptor named web.xml.
Just as the name suggests, the deployment descriptor is an XML
file that tells how the application will be deployed, defining such
things as what URLs the application will use and what security
restrictions are placed on pages in the web site.
Here are the rules for directories within a WAR file, as defined by
the J2EE specification:

• WEB-INF: This directory and all sub-directories are for non-
web content. Users cannot see this directory in their
browser. It holds the deployment descriptor web.xml.

• WEB-INF/classes: This directory is automatically added to
the CLASSPATH. It is for Java class files and other
resource files loaded from the CLASSPATH.

• WEB-INF/lib: This directory is for Java libraries. Any JAR
file in this directory is automatically added to the
CLASSPATH.

• <other directories>: All other directories in the WAR file,
including the top-level directory, are for web content. This
can be dynamic content (JSP pages) or static files (images,
HTML, PDF documents, etc.).

The highest level of packaging you can have for a J2EE
application is the EAR file (Enterprise Application Archive). An
EAR file can contain dynamic web pages in WAR files, and
Enterprise JavaBeans and class libraries in JAR files. Like a
WAR file, there is an application level deployment descriptor
application.xml.
A developer with a thorough knowledge of J2EE can create the
deployment descriptors and archives for deployment to an
application server. The same jar tool can create WAR and EAR
files as JAR files. Commercial development environments and
application servers that provide GUI tools for these steps simplify
this process. The benefits of working out the packaging are
realized when the application is released. An application that is
packaged as a WAR or EAR file can easily be moved from a test

Developing and Deploying Java Applications Around SAS Greg Barnes Nelson & Jeff Wright

server to a production server.

SAS SERVICE DETAILS

With this understanding of Java, virtual machines, and JAR files,
let's return to the SAS APIs for Java and examine the details of
how they are used. As we have learned, there are numerous
ways to talk to SAS. Which one we choose depends on what we
want to do. Using the scenarios described previously, we have a
simple heuristic:

• If you want to access data stored in SAS, use JDBC. There
are both SAS/Share and IOM JDBC drivers available

• If you want to access the power of SAS, you have two
options: SAS/Connect or IOM (Integration Technologies)

Of course, each of these requires that you have the relevant SAS
products and a desire to learn enough about the technology to be
more than dangerous – but efficient and effective. Users of
AppDev Studio software will find much of these decisions “hidden”
from you (but don’t be confused, these methods are all
“accessible” in the software).
For example, in AppDev Studio, most users will find it easy to
develop applications that use SAS/Connect with or without the
MiddleWare server. JDBC access is not so obvious and IOM is
not obvious at all1. But don’t lose faith. With a little help, a slight
shove and lots of patience, you’ll do fine.

SAS/Share

SAS/Share is a SAS product that allows us to talk to data (stored
in SAS datasets) without being concerned that someone else is
touching a record at the same time. We might want to use
SAS/Share if our applications requires concurrent update access
to SAS datasets. Our data entry application described earlier is a
great example. You don’t want to edit a record at the same time
someone else is modifying the record as you will likely get locked
out, or worse, get unexpected results in your database.
SAS datasets managed by SAS/Share can be accessed either by
a SAS program (Data Step or Proc Step) or via Java. Since we
are focusing on Java as the client of interest, let’s focus on that
approach. SAS/Share is a required product when accessing SAS
datasets in update mode using the JDBC driver. 2
JDBC provides Java developers with access to databases using
an object-orientated mechanism. A JDBC program consists of
three main elements:

The Java client code

• Written by you, the developer

• All calls to the database must conform to the
JDBC API

The JDBC driver manager

• Supplied by the core Java library

• Provides a link between your Java application and
the Driver

The JDBC driver

• Supplied by vendor or third party, appropriate to
the database (in this case: SAS)

1 Note: If one simply wants to use the IOM *protocol* and is content with the existing
set of ADS components, you can use the com.sas.rmi.Connection component.
2 Note: SAS tables can be accessed via the JDBC-to-ODBC Bridge in addition to the
JDBC driver. This however, reduces your ability to deploy your application on multiple
platforms (a strength of both SAS and Java)

• Converts JDBC-compliant calls to native database
calls

To access the SAS/Share data sources via JDBC, you must have
the JDBC driver available to your application. The SAS/Share
driver consists of two JAR files (note: we will discuss JAR files in
more detail later) which are provided with AppDev Studio:

• connect.jar

• netutil.jar

They must be either included in the WEB-INF/lib directory of your
web application, or installed into a common location on the
CLASSPATH for your application server.
The other requirement is that SAS/Share must be running. This is
achieved by proc server. Here is an example program to start
SAS/Share:

proc server
serverid=shr1
authenticate=opt
log=query;

run;
endsas;

Similarly, the service is stopped using proc operate. On
Windows, it is also possible to configure SAS/Share as a
Windows service. When using TCP transport, the share serverid
corresponds to a service defined in
\WINDOWS\system32\drivers\etc\drivers (Windows) or
/etc/services (UNIX). Consult the SAS/Share documentation for
full details on configuring and running SAS/Share.
SAS/Share is a separately licensed product that must be present
on your target deployment server or servers.
It is also worth noting that there is an alternative JDBC supplied
by SAS that uses IOM (see below) for connectivity rather than
SAS/Share. Establishing a connection is different than with
standard JDBC; the java.sql.Connection is made available
through the IOM workspace. Once you have have obtained the
Connection, this JDBC driver is used just as the SAS/Share
driver. To obtain safe, concurrent access to datasets, you may
find it necessary to include SAS/Share in your architecture even if
you're using the IOM JDBC driver for access.

SAS/Connect

SAS/Connect was the first method that SAS came out with for
distributed access to resources within the entire SAS system.
Essentially, this method involves a Java client talking to a SAS
server using SAS/Connect – a proprietary protocol that allows
SAS components to talk to one another on different machines.
AppDev Studio comes with the webAF custom tags for JSP that
use SAS/Connect (or IOM) to submit blocks of SAS code and
create views of SAS results. These tags are embedded in a JSP
page and have the appearance of HTML tags, but they initiate
SAS operations on the server before the resulting HTML page is
returned to the client's browser.
One pitfall to be aware of in using webAF and SAS/Connect is the
configuration of the Java and SAS servers that will be the target
of your deployment. When you install AppDev Studio, it makes all
of the modifications required to your development workstation.
However, when you deploy to a server environment, you will have
to make these changes yourself.
On the Java side, your application must have access to the
following JAR files from AppDev Studio:

• activation.jar

Developing and Deploying Java Applications Around SAS Greg Barnes Nelson & Jeff Wright

• antlr.jar

• brgorb.jar

• connect.jar

• iomdriver.jar

• iomprx.jar

• mail.jar

• netutil.jar

• queryAF.jar

• remobj.jar

• webAF.jar

• webAFServerPages.jar

SAS recommends that all but the last of these be installed in the
<java_home>/jre/lib/ext library, which is the standard extensions
location (where <java_home> is the base directory of your J2SE
SDK installation). JAR files placed in this directory are
automatically added to the CLASSPATH of all applications. The
last JAR file, webAFServerPages.jar, contains the webAF custom
JSP tags, and is best deployed in the WEB-INF/lib directory of
your web application.
If addition, you must include the tld file sasads.tld for the custom
tags in your application. This file is part of Sun's JSP spec for
custom tags, and contains metadata about the SAS webAF tags.
The location of the tld file is normally defined in the web
application's web.xml deployment descriptor.
On the SAS side, you first need to install updates to your SAS
server software. These updates are supplied with AppDev Studio
as a cpo transport file and come with with installation directions.
Next you need a SAS/Connect server. On Windows, this is can
either be a Windows service or a SAS/Connect spawner that
listens for SAS/Connect requests on a specific port number.
For example, on Windows, we start the SAS/Connect Spawner by
invoking the following command:

C:\SASV82\spawner.exe -c tcp -telnet 2323

On UNIX, there is no need to have SAS/Connect running since
we usually reference this through our connection. We simply
provide the command that should be used to start SAS when we
connect, for example:

/sas/sas -dmr -comamid tcp -noterminal -cleanup

We can test the connection using a simple JSP page or through
the test facility in AppDev Studio.
Once SAS/Connect is running, we can use our Java client
(program) to access SAS through the sas.com api (see:
http://support.sas.com/rnd/appdev/webAF/api.htm).
If you use the SAS/Connect protocol, you must license
SAS/Connect and SAS/IntrNet on the server side. The webAF
libraries come with AppDev Studio, and you should be certain to
obtain the latest updates from the SAS support web site.

SAS Middleware Server

You may (but are not required) choose to utilize the AppDev
Studio Middleware Server (MWS). The MiddleWare Server
enables your application to share SAS sessions (on the server)
with other users (rather than having to start a new SAS session
each time you connect to data) while adding performance
enhancements such as preloading SAS sessions and remote
SAS model classes. One of the factors in deciding to use the
MiddleWare server will be whether or not you need to take

advantage of the user's “WORK” datasets, which are session-
specific. If you do, you may not be able to share sessions.

Integration Technologies (IOM Object Spawner)

Integration Technologies – or IOM as it is sometimes referred – is
a set of APIs that allow you to talk to SAS as if it were a set of
Java objects. IOM is a much more robust method and
consequently more complicated when it comes to developing and
administering.
IOM introduces us to the Workspace Factory. This provides us
with program level access to all of the power of SAS through
Java. The SAS workspace is the highest-level component in the
IOM object hierarchy, and connecting to a workspace object is the
first step in using an IOM server. The WorkspaceFactory class
provides methods for creating and connecting to a SAS
workspace on an IOM server.
On the Java side, IOM is a Java library and requires the following
JAR files, supplied with Integration Technologies:

• brgorb.jar

• iomdriver.jar

• iomprx.jar

• netutil.jar

These jar files must either be included in the WEB-INF/lib
directory of your web application, or installed into a common
location on the CLASSPATH for your application server.
On the SAS side, you must have access to an IOM server. The
IOM server is a program that is started using the objspawn
command on either UNIX or Windows and requires a
configuration file for its parameters.
On Windows, we would start the object spawner with a command
like:

c:\sasv8\inttech\sasexe\objspawn -configFile
objspawn.cfg

The configuration file contains instructions on where the server is,
what port number we should connect on and what protocol should
be used to access the server.
Like the SAS/Connect protocol, there are volumes of
documentation on IOM and how to write Java clients to utilize the
full power of SAS. These can be found at:
http://support.sas.com/rnd/itech/doc/dist-
obj/javaclnt/javaprog/index.html
If you use the IOM protocol you must license SAS/Integration
Technologies on the server side3. Up to now, we have referred to
using SAS IOM as a preferred method of talking to SAS from non-
SAS clients and we have intentionally been non-specific about
how we can use IOM. The fact is that IOM can be used both as a
protocol and as a set of programmatic interfaces. We really are
referring to the latter in this paper as the former requires the use
of com.sas.rmi.Connection object and the remote object class
factory (ROCF) which plugs in the correct protocol stubs
underneath the ADS components. Because of its reliance on SCL
as a server side component, we don’t usually recommend the its
use (ROCF), but rather, we mean using IMO as a set of
programmatic interfaces.

SAS OLAP Server

The focus of this paper has been on accessing SAS datasets and
compute services offered through SAS. If you are using webEIS
and a version 8 SAS server, you will also need SAS OLAP
Server. The SAS OLAP Server contains critical components that
are used when you implement HOLAP solutions.

3 IOM protocol is only supported if you run against SAS 8.2

Developing and Deploying Java Applications Around SAS Greg Barnes Nelson & Jeff Wright

PACKAGING, BUILDING AND DEPLOYMENT

At this point, we have covered Java web applications and SAS
APIs for Java. We have looked at concepts and configuration
details. In this section we tie it all together, using an example to
discuss packaging, building and deployment.

A COMPLETE EXAMPLE

To illustrate the principles discussed in this paper, we created a
sample J2EE web application that uses all three Java/SAS
connectivity approaches. The main web page is an index page
with links to four JSP pages:

• CustomTagExample.jsp: This page contains webAF custom
tags that connect to SAS, submit a block of SAS code, and
display results in both Bar graph and table form.

• CustomDataViewer.jsp: This page contains webAF custom
tags to create a custom table view of a SAS dataset.

• JDBCConnection.jsp: This page instantiates a Java object,
which performs a query against SAS/Share using JDBC.
The results are displayed in a table.

• IOMPackageSample.jsp: This page contains a form, which
allows code to be submitted. When the form is submitted, a
Java servlet connects to an IOM server, creates several
artifacts (PDF, RTF, SAS Dataset and Excel file), packages
them up and sends them back to the client for rendering.

In our example, we followed the typical practice of encapsulating
blocks of Java logic into standalone Java classes or servlets. In
this case, the Java logic consisted of data access code that
manipulates the JDBC and IOM APIs. Although it is possible to
embed arbitrary amounts of Java code into a JSP page, it is best
to leave JSP files focused on presentation concerns.
The details of how the web tier communicates with the
analytics/data tier involve settings such as host names, ports, and
other communication parameters. Multi-tiered applications need
a way to specify environment-specific customizations. In our
basic example, we put these customizations into a Java
properties file that is read at run-time. The java.util.Properties
class is frequently used by Java applications to externalize
configuration details into a file that contains setting in the form
name=value. Another approach to the problem of environment-
specific customizations would be to use a directory service.
We like to create an automated build process for our projects.
Ideally the build process should be scripted in a way that doesn't
require a GUI development environment. Using this approach, an
administrator that is not a Java developer can perform the build,
and builds can be scheduled as a batch process to check for
integration problems. A very popular tool for Java build
automation is Ant (http://ant.apache.org). Ant has some similarity
to the make utilities that have been used for years in C and C++
development. It not only knows how to run the Java compiler and
jar tool, it is capable of doing all file manipulation activities
required for a full-featured build system. Ant uses an XML file
that defines the build targets and steps. Our basic build.xml file
contains the following targets:

• compile: Compile Java sources

• war: Package web content as a WAR archive

• ear: Package the entire application as an EAR archive

• clean: Delete all compiler output and archives, to reset the
project to a clean state

We created and tested our sample application on Windows
workstations. Since we were using all three SAS services
discussed in this paper, we created Windows BAT scripts to run
SAS/Share, the SAS/Connect spawner, and the IOM object
spawner. For production deployment on Windows, you would
typically configure these as Windows services. For production

deployment on UNIX, you would write UNIX scripts to launch the
appropriate services, and integrate them with the init process so
they would be started at automatically.

EXAMPLE PROJECT DIRECTORY STRUCTURE

We used the following directory structure for our application. This
structure not only includes Java source code, but also library files,
web content, SAS data sets, and administrative/build scripts.

Web Application Directory Structure

Directory Description

bin Scripts for starting SAS services, plus IOM
config

data Sample datasets
devlib Java JAR files not deployed with the WAR

file, either because they are installed to a
different location or because they are only
needed for compilation, not runtime.

logs Log files for SAS services, created by scripts
in bin directory

make Location of Ant build.xml instructions
make/descriptors Holds deployment descriptor files not

included in the web directory, namely
application.xml

make/dist Location where build.xml puts WAR and EAR
files

src Java source code
web Web content (JSP files, images, etc)
web/WEB-INF Standard directory for web application

metadata not accessible to user browsers.
Location for web.xml deployment descriptor
and sasads.tld tag descriptor.

web/WEB-INF/
classes

Ant build puts compiled Java classes here.
Also the location for the
DataViewer.properties file.

web/WEB-INF/lib JAR files deployed with the web
application, such as
webAFServerPages.jar

TESTING YOUR WEB APPLICATION

Once you deploy your applications, it is important that you test all
of the components within it. This is best accomplished by
planning a test deployment early in your project to make sure you
have a clear understanding of all the server configuration issues.
The following suggestions have been compiled to help you think
about the kinds of things that can (and usually will) go wrong:

• If your Web application cannot locate the tag extension
information, insure that the following is true

o the webAFServerPages.jar is included in the
application's WEB-INF/lib directory

o the web.xml file contains the appropriate reference
to the sasads.tld file

o the sasads.tld is stored in the location specified in
web.xml.

• Make sure all JAR files required by the SAS API you have
chosen are installed in the appropriate location.

• If you are using the AppDev Studio Java components to
connect to SAS, you will need to apply the AppDev Studio
server-side catalog updates to the SAS server.

• Make sure you use the correct directory path for any images,
styles or other includes that are referenced in your pages.
You may need to change the references in your code before
you deploy your JSP pages and servlets so they point to the
correct relative or absolute paths.

Developing and Deploying Java Applications Around SAS Greg Barnes Nelson & Jeff Wright

• If your application has problems locating resources you have
specified, verify that the correct URL is provided to access
those resources. If the URL begins with a "/", then it is a
resource that can be found in a directory relative to the
application's root directory. If the URL does not begin with a
"/", then the resource can be found relative to the current
JSP page. This means that you must check the URLs that
are interpreted by a Web browser, including links to other
pages, HTML <form> actions, image and style sheet links, to
verify that the correct path is specified.

• If you create an EAR file that you want to distribute to
multiple combinations of operating systems, Web servers,
applications servers, and SAS servers, make sure that you
test that Web application in all intended environments.

REQUIRED INFRASTRUCTURE

Let's recap the required technical infrastructure to host our web
application. In many of the scenarios outlined above, we have
made some fundamental assumptions about what was “running”
so everything will function properly. In the diagram below (taken
from Sun Microsystems web site) we show the components that
typify a multi-tiered web application.

Client Tier

In the client tier, the only technical infrastructure is the web
browser. For an intranet application, you will frequently be
targeting a corporate standard web browser. For a public Internet
application, you should develop a profile of browsers and browser
settings that you will support. There is a tradeoff here between
supporting the largest possible audience, including older
browsers, and the richer experience possible with up to date
browsers, especially with regards to Dynamic HTML and
Cascading Style Sheets (CSS). The good news is that up to date
browsers, such as Internet Explorer 5.5 and newer, Netscape 7.0
and newer, and Mozilla 1.0 and newer, have a much greater
compatibility than in the early days of the web.

Web Tier

In the web tier, you will need to be sure that Java is installed. The
Java2 Standard Edition Software Development Kit (J2SE SDK)
can be downloaded from http://java.sun.com. You will also need
an application server. There are a number of commercial
application servers such as BEA WebLogic and IBM WebSphere.
It is also possible to use open source alternatives such as Tomcat
(http://jakarta.apache.org/tomcat/) and JBoss
(http://www.jboss.org). You may also choose to use a standalone
web server such as Microsoft IIS or Apache. Most application
servers give you the ability to operate using a built-in web server,
or to act as a plug-in to IIS or Apache. Finally, in the web tier, you
must have the Java libraries required to use SAS, and possibly
JDBC drivers for direct access to any database present in the
third tier. Recall from previous discussions that these libraries will

be in the form of JAR files, and that they can be included in the
WEB-INF/lib directory of a WAR file for deployment.
You must verify support for the correct version number of the JDK
before selecting an application server. The SAS custom tag
library and other SAS libraries require support for the Servlet 2.2
and JSP 1.1 specification using Java 1.2.2 or higher. In addition,
the SAS server that you access from your Web applications must
include the AppDev Studio Server-Side updates.
In the web tier, you will find the following types of files:

• HTML

• JavaScript

• Images

• Documents (Doc, RTF, PDF)

• JavaServer Pages (JSPs)
In addition, you will also find directories for the Java server side
components. These include:

• Application descriptor files (web.xml)

• JAR, WAR and EAR files

• Custom Tag definitions and libraries

• External libraries (such as SAS’ APIs for data access,
compute services and IOM libraries)

A fairly typical directory structure for a web application that utilizes
SAS APIs has already been shown in this paper (Section:
Example Project Directory Structure) along with a description of
what should be contained in each directory.

Analytics/ Data Tier

In the analytics/data tier, the specific infrastructure you need will
depend on your architecture choices. Given the topic of this
paper, we expect Base SAS software to be included in this tier.
On top of this are the services required for Java access; some
combination of SAS/Share, Connect Spawner, and IOM Object
Spawner. If you are using webAF with SAS/Connect, you will
need to apply the AppDev studio updates to SAS. If your
application uses a database such as Oracle, DB2, or Microsoft
SQL Server in conjunction with SAS, that is part of this tier and
typically introduces a need for SAS/Access.
In summary, here are a few best practices around technical
infrastructure:

• Although we haven't specified any versions of software in
this discussion of infrastructure, that doesn't mean that
versions are unimportant. On the contrary, establishing a
working configuration requires carefully making note of
required versions of all software. All members of the
development and support team should understand the
selected versions of tools. Documenting and managing the
specific versions of infrastructure products is part of the
configuration management for the application.

• Be sure to understand and document the location of all log
files. Typically, you will have server logs for the application
server, for SAS, and for your database. These will be
invaluable in trouble-shooting production problems. Also
insure that the log files or log directories have a clean-up
mechanism in place so that you disk space is not exhausted
by logs!

• Clearly there are a number of moving parts in a multi-tiered
application. To deliver the availability that users expect, it is
useful to initiate proactive monitoring of all the server-based
processes that must be running and healthy for the
application to function.

• Security is beyond the scope of this paper, but the
architecture and technical infrastructure should be carefully
planned to support the requirements of the application.

Developing and Deploying Java Applications Around SAS Greg Barnes Nelson & Jeff Wright

Typical Application Infrastructure

Client Tier Web Tier Analytics/
Data Tier

Web
Browser

J2SE SDK
Application Server
Web Server
SAS Java Libraries
DBMS JDBC driver

Base SAS Software
SAS/Share
Connect Spawner
IOM Object Spawner
DBMS of choice
SAS/Access

Required Development Skills

In the same way, it is useful to profile the development skills
required for building a web application using SAS and Java. A
representative mix of skills is listed in table below.

Development Skills

Client Tier Web Tier Analytics/
Data Tier

HTML
JavaScript
CSS
Graphics

Java
Object-Oriented Design
JSP
Servlets
JDBC

Base SAS
SAS Macro
SQL
SCL (if SAS models are
used)
Data Modeling

CONCLUSION

This paper has been a high-level tour through many topics
relevant to the creation of web applications using SAS and Java.
Our intention was not to give you a cookbook for all of the
technologies we've touched upon. Instead, we wanted to survey
the important considerations so you know what questions must be
answered when constructing a working application. Because the
breadth of material we've covered is so wide, we've focused on
the integration and deployment aspects of these technologies.
We expect that the nuts and bolts of programming in SAS and
Java are within the grasp of our audience, the working developer.
Other topics that you may wish to explore as you go deeper into
this subject are:

• Security

• Directory Services

• Automated testing using tools such as JUnit
(http://www.junit.org)

• Performance and load testing tools such as Apache’s JMeter
(http://jakarta.apache.org/jmeter)

• Model-View-Controller frameworks such as Apache Struts
(http://jakarta.apache.org/struts/index.html)

APPDEV STUDIO 3.0

Since this paper has been written just prior to the release of
AppDev Studio 3.0 (to be released with SAS 9.1), it is worth
noting the changes that we will see with that new release.

• With the Servlet 2.3 and JSP 1.2 specifications, web
application containers are moving away from dependence
upon the extensions directory. The recommendation is to
deploy fully self contained web applications based upon the
notion that this improves the robustness of each application

(they cannot stomp on one another's jars) and the fact that
disk space on the server is cheap. As a result, starting with
AppDev Studio 3.0, SAS will default to building fully self
contained web applications and there will be no
recommendation to store SAS jars in the Java extension
directory. This has a number of benefits, such as eliminating
one extra deployment step, protecting AppDev Studio from
incompatible downloads into the extensions directory (e.g.,
version conflicts with an XML parser or SAS jar), and
providing a version based jar repository for applets so that
different applets on the same machine can run with different
sets of underlying jars.

• SAS has renamed their runtime jars such that they all are
prefixed with "sas.", and repackaged many of the classes to
provide more granular sets of jars to varying solutions.
Therefore, the recommended set of jars be changing.

• In version 3.0, webAF uses Ant internally for builds and
supports user customization of the Ant build script. All Ant
tasks are exposed in the build menu so that they may be
driven directly from the webAF GUI. Or, the build scripts can
support batch builds and packaging.

• Tag library deployment is significantly easier in Servlet 2.3 /
JSP 1.2. The TLD file is stored inside of the tag library jar
file and automatically discovered by the container. This
eliminates many of the problems associated with mapping
the taglib URI in the web.xml. SAS will follow this practice
with our custom tag libraries in ADS 3.0.

• In AppDev Studio 3.0, SAS allows the creation of web
application projects instead of JSP or Servlet projects.
Templated content is supported, as are JSTL and Struts.
We also support development of portlets for the SAS
Information Delivery Portal. They build .war files for webapp
deployment with all necessary SAS servlet mappings (e.g.,
ContentServlet, MDQueryServlet, etc.) pre-defined.

ACKNOWLEDGMENTS

The authors would like to sincerely thank several people for their
guidance and thoughtful review of this manuscript. Specifically,
we would like to thank Rich Main, Steve Jenisch, Pat Herbert,
Julian Anderson and Mary Bednarski.

Developing and Deploying Java Applications Around SAS Greg Barnes Nelson & Jeff Wright

CONTACT INFORMATION

Your comments and questions are valued and encouraged.
Please feel free to contact the authors at:

Jeff Wright or Greg Barnes Nelson
jwright@thotwave.com or greg@thotwave.com
2054 Kildaire Farm Rd, #322
Cary, NC 27511
800.584-2819 – Phone/ Fax

Bibliography and Recommended Reading

The classic advice on learning web development is: surf the web and "view
source" on web pages that you like. There are many, many resources on
the web for learning web development. Here are a few goodies...

Web Development with Java Server Pages, Duane Fields et al. (Manning)

 Databases on the Web: Designing and Programming for Network Access
Patricia Ju (Out of print, but does a nice job on fundamentals
of web architecture and separation of layers for web
applications)

XML and SAS: An Advanced Tutorial. Barnes Nelson, G. (2000). SAS
Users Group International, Indianapolis, IN, SAS Institute.

The Art and Science of Smalltalk: An Introduction to Object-Oriented
Programming Using VisualWorks. Simon, L. (1995). London,
UK, Prentice-Hall.

Beginning Java Databases: JDBC, SQL, J2EE, EJB, JSP, XML (by Kevin
Mukhar, et al.)

Thinking in Java (by Bruce Eckel) http://www.bruceeckel.com/

Java in a Nutshell, Flanagan, D. O'Reilly & Associates, 1999, ISBN 1-
56592-487-8

Core Java 2, Volume I - Fundamentals, Horstmann, C.S. and Cornell, G.
Prentice Hall, 1999, ISBN 0-13-081933-6

Core Java 2, Volume II - Advanced Features, Horstmann, C.S. and
Cornell, G. Prentice Hall, 2000, ISBN 0-13-081934-4

Sun Microsystem's Java tutorial (http://java.sun.com/docs/books/tutorial/)

JSP or Servlets - Which architecture is right for you?
http://www.adtmag.com/java/article.asp?id=354&mon=3&yr=20
01

Understanding JavaServer Pages Model 2 architecture
http://www.javaworld.com/javaworld/jw-12-1999/jw-12-ssj-
jspmvc.html

Developing Data-Driven Applications Using JDBC and Java Servlet/JSP.
Chad Ferguson and Sandra Brey (2003) Technologies, SUGI
28 (http://www2.sas.com/proceedings/sugi28/049-28.pdf)

"Web Application Deployment Tips and Tricks"
http://support.sas.com/rnd/appdev/webAF/server/deployingapp
s.htm

"Remote Access Troubleshooting Guide"
http://support.sas.com/rnd/appdev/doc/RemoteAccessTSG.htm

"webAF Reference"
http://support.sas.com/rnd/appdev/webAF/reference.htm

"SAS/Share Driver for JDBC"
http://support.sas.com/rnd/web/intrnet/java/jdbc/index.html

"SAS Integration Technologies, Developing Client Applications"
http://support.sas.com/rnd/itech/doc/dist-obj/index.html

